Student's Nan.		_	_
Teacher's Name			
School	2 8		

AP® Physics C: Mechanics Exam

SECTION II

2007

DO NOT OPEN THIS INSERT UNTIL YOU ARE TOLD TO DO SO.

Write your answers in the pink Section II booklet. This green insert may be used for reference and/or scratch work as you answer the free-response questions, but no credit will be given for the work shown in the insert.

© 2007 The College Board. All rights reserved. College Board, Advanced Placement Program, AP, and the acorn logo are registered trademarks of the College Board. Unauthorized reproduction or use of any part of this test is prohibited and may result in cancellation of scores and possible prosecution to the fullest extent of the law.

FORM

4DBP

TABLE OF INFORMATION FOR 2006 and 2007

CONSTANTS AND CONVERSION FACTORS			UNITS		PREFIXES			
1 unified atomic mass unit,	$1 \text{ u} = 1.66 \times 10^{-27} \text{ kg}$	Name	Symbol	Fac	10 mm	refix	Symbol	
	$= 931 \mathrm{MeV}/c^2$	meter	m	10	_	giga	G	
Proton mass,	$m_p = 1.67 \times 10^{-27} \text{ kg}$	kilogram	n kg	10	2	nega	M	
Neutron mass,	$m_n = 1.67 \times 10^{-27} \text{ kg}$	second	s	10	0	ilo	k	
Electron mass,	$m_e = 9.11 \times 10^{-31} \mathrm{kg}$				2	enti	С	
Electron charge magnitude,	$e = 1.60 \times 10^{-19} \mathrm{C}$	ampere	A		,	nilli nicro	m	
Avogadro's number,	$N_0 = 6.02 \times 10^{23} \mathrm{mol}^{-1}$	kelvin	K		0		μ	
Universal gas constant,	$R = 8.31 \text{ J/(mol \cdot K)}$	mole	mol		10	nano	n	
Boltzmann's constant,	$k_B = 1.38 \times 10^{-23} \text{J/K}$	hertz	Hz	10	, I	pico	p	
Speed of light,	$c = 3.00 \times 10^8 \mathrm{m/s}$	newton	N	VA		ALUES OF		
Planck's constant,	$h = 6.63 \times 10^{-34} \text{ J} \cdot \text{s}$	pascal	Pa	FIIN		RIGONOMETRIC TONS FOR COMMON		
	$= 4.14 \times 10^{-15} \text{ eV} \cdot \text{s}$	joule	J	ANGLES			Ommon	
	$hc = 1.99 \times 10^{-25} \text{ J} \cdot \text{m}$	watt	W	θ	$\sin \theta$	cos	θ tan θ	
Vacuum permittivity,	= 1.24×10^3 eV·nm $\epsilon_0 = 8.85 \times 10^{-12}$ C ² /N·m ²	coulomb	C	0°	0	1	0	
Coulomb's law constant,	$k = 1/4\pi\epsilon_0 = 9.0 \times 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2$	volt	V	30°	1/2	√3/2	√3/3	
Vacuum permeability,	$\mu_0 = 4\pi \times 10^{-7} (\text{T-m})/\text{A}$	ohm	Ω	37°	2/5	4.15	2/4	
COMMON DATE OF THE PARTY OF THE	$k' = \mu_0 / 4\pi = 10^{-7} (\text{T} \cdot \text{m}) / \text{A}$	henry	Н	0000000	3/5	4/5	3/4	
Universal gravitational constant,	$G = 6.67 \times 10^{-11} \mathrm{m}^3/\mathrm{kg} \cdot \mathrm{s}^2$	farad	F	45°	$\sqrt{2}/2$	$\sqrt{2}/2$	2 1	
Acceleration due to gravity	o olor Nito in ping o	tesla	T	53°	4/5	3/5	4/3	
at Earth's surface,	$g = 9.8 \text{ m/s}^2$	degree		60°	√3/2	1/2	$\sqrt{3}$	
1 atmosphere pressure,	$1 \text{ atm} = 1.0 \times 10^5 \text{ N/m}^2$	Celsiu		00	V312	1/2	. 43	
	$= 1.0 \times 10^5 \text{ Pa}$	electron- volt	- eV	90°	1	0	∞	
1 electron volt,	$1 \text{ eV} = 1.60 \times 10^{-19} \text{ J}$	VOIL	C Y					

The following conventions are used in this examination.

- I. Unless otherwise stated, the frame of reference of any problem is assumed to be inertial.
- II. The direction of any electric current is the direction of flow of positive charge (conventional current).
- III. For any isolated electric charge, the electric potential is defined as zero at an infinite distance from the charge.

MECHANICS

$v = v_0$	+ at	a =	_	acceleration
V		F =	_	force
r - r	$+ v_0 t + \frac{1}{2} a t^2$	f =	=	frequency
$x - x_0$	$+ b_0 t + \overline{2} ut$	h =	=	height
2	2	I =	=	rotational inertia

$$v^2 = v_0^2 + 2a(x - x_0)$$
 $J = \text{impulse}$
 $\sum \mathbf{F} = \mathbf{F}_{net} = m\mathbf{a}$ $K = \text{kinetic energy}$
 $K = \text{kinetic energy}$

$$\mathbf{F} = \frac{d\mathbf{p}}{dt}$$

$$\ell = \text{length}$$

$$L = \text{angular momentum}$$

$$\mathbf{J} = \int \mathbf{F} \, dt = \Delta \mathbf{p}$$
 $m = \text{mass}$ $N = \text{normal force}$ $P = \text{power}$

$$p = m\mathbf{v}$$
 $p = \text{momentum}$ $r = \text{radius or distance}$ $F_{fric} \le \mu N$ $\mathbf{r} = \text{position vector}$

$$T = \text{period}$$

$$W = \int \mathbf{F} \cdot d\mathbf{r}$$

$$t = \text{time}$$

$$U = \text{potential energy}$$
 $v = \text{velocity or speed}$
 $V = \text{work done on a sys}$

$$W = \frac{1}{2}mv^2$$
 $W = \text{work done on a system}$ $W = \text{position}$

$$P = \frac{dW}{dt}$$
 $\mu = \text{coefficient of friction}$ $\theta = \text{angle}$

$$P = \mathbf{F} \cdot \mathbf{v}$$

$$\tau = \text{torque}$$

$$\omega = \text{angular speed}$$

$$\Delta U_g = mgh$$
 $\alpha = \text{angular acceleration}$

$$a_c = \frac{v^2}{r} = \omega^2 r$$
 $\mathbf{F}_s = -k\mathbf{x}$
$$\mathbf{\tau} = \mathbf{r} \times \mathbf{F}$$

$$U_s = \frac{1}{2}kx^2.$$

$$\sum \tau = \tau_{net} = I\alpha$$

$$I = \int r^2 dm = \sum mr^2 \qquad \qquad T = \frac{2\pi}{\omega} = \frac{1}{f}$$

$$\mathbf{r}_{cm} = \sum m\mathbf{r}/\sum m$$
 $T_s = 2\pi\sqrt{\frac{m}{k}}$

$$v = r\omega$$

$$\mathbf{L} = \mathbf{r} \times \mathbf{p} = I\omega$$

$$T_p = 2\pi \sqrt{\frac{\ell}{g}}$$

$$K = \frac{1}{2}I\omega^2 \qquad \qquad \mathbb{F}_G = -\frac{Gm_1m_2}{r^2}\,\hat{\mathbf{r}}$$

$$\omega = \omega_0 + \alpha t$$

$$U_G = -\frac{Gm_1m_2}{r}$$

$$\theta = \theta_0 + \omega_0 t + \frac{1}{2} \alpha t^2$$

ELECTRICITY AND MAGNETISM

$$F = \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{r^2}$$
 $A = \text{area}$
 $B = \text{magnetic field}$
 $C = \text{capacitance}$
 $E = \frac{F}{q}$ $d = \text{distance}$
 $E = \text{electric field}$
 $E = \text{emf}$

$$\oint \mathbf{E} \cdot d\mathbf{A} = \frac{Q}{\epsilon_0}$$

$$F = \text{force}$$

$$I = \text{current density}$$

$$E = -\frac{dV}{d\epsilon}$$

$$I = \text{inductance}$$

$$V = \frac{1}{4\pi\epsilon_0} \sum_{i} \frac{q_i}{r_i}$$

$$\ell = \text{length}$$

$$n = \text{number of loops of wire}$$

$$\text{per unit length}$$

$$N = \text{number of charge carriers}$$

$$U_E = qV = \frac{1}{4\pi\epsilon_0} \frac{q_1 q_2}{r}$$
 per unit volume
 $Q = \text{charge}$

$$C = \frac{Q}{V}$$
 $q = \text{point charge}$ $R = \text{resistance}$ $r = \text{distance}$

$$C = \frac{\kappa \epsilon_0 A}{d}$$
 $t = \text{time}$
$$U = \text{potential or stored energy}$$

$$C_p = \sum_i C_i$$
 $V = \text{electric potential}$ $v = \text{velocity or speed}$

$$\frac{1}{C_s} = \sum_{i} \frac{1}{C_i}$$

$$\rho = \text{resistivity}$$

$$\phi_m = \text{magnetic flux}$$

$$\kappa = \text{dielectric constant}$$

$$I = \frac{dQ}{dt}$$

$$U_c = \frac{1}{2}QV = \frac{1}{2}CV^2$$

$$\oint \mathbf{B} \cdot d\ell = \mu_0 I$$

$$R = \frac{\rho \ell}{4\pi}$$

$$d\mathbf{B} = \frac{\mu_0}{4\pi} \frac{I \, d\ell \times \mathbf{r}}{r^3}$$

$$\mathbf{F} = \int I \ d\ell \times \mathbf{B}$$
$$\mathbf{E} = \rho \mathbf{J}$$

$$I = Nev_d A$$
 $B_s = \mu_0 n I$

$$V = IR \qquad \qquad \phi_m = \int \mathbf{B} \cdot d\mathbf{A}$$

$$R_{s} = \sum_{i} R_{i} \qquad \qquad \mathcal{E} = -\frac{d\phi_{m}}{dt}$$

$$\frac{1}{R_n} = \sum_{i} \frac{1}{R_i}$$
 $\mathcal{E} = -L \frac{dI}{dt}$

$$P = IV U_L = \frac{1}{2}LI^2$$

$$\mathbf{F}_{M} = q\mathbf{v} \times \mathbf{B}$$

ADVANCED PLACEMENT PHYSICS C EQUATIONS FOR 2006 and 2007

GEOMETRY AND TRIGONOMETRY

Rectangle
$$A = area$$

$$C = \text{circumference}$$

$$V = \text{volume}$$

$$S = \text{surface area}$$

$$b = \text{base}$$

$$h = \text{height}$$

 $\ell = \text{length}$

$$\ell = \text{length}$$
 $v = \text{width}$

$$w =$$
width

$$r = radius$$

$$C = 2\pi r$$
 $r = \text{radius}$

$$C = 2\pi r$$

$$C = 2\pi r$$
 arallelepiped

Parallelepiped
$$V = \ell w h$$

$$V = \ell w h$$

A = bh

 $A = \frac{1}{2}bh$

 $A = \pi r^2$

Triangle

Circle

$$V = \pi r^2 \ell$$

$$S = 2\pi r\ell + 2\pi r^2$$

Sphere

Sphere
$$V = \frac{4}{3}\pi r^3$$

$$S = 4\pi r^2$$

$$a^2 + b^2 = c^2$$

$$b^2 = c^2$$
$$= \frac{a}{a}$$

$$\sin \theta = \frac{a}{c}$$

$$\cos \theta = \frac{b}{c}$$

$$\tan\theta = \frac{a}{b}$$

CALCULUS

$$\frac{df}{dx} = \frac{df}{du}\frac{du}{dx}$$

$$\frac{d}{dx}(x^n) = nx^{n-1}$$

$$\frac{d}{dx}(e^x) = e^x$$

$$\frac{d}{dx}(\ln x) = \frac{1}{x}$$

$$\frac{d}{dx}(\sin x) = \frac{1}{x}$$

$$\frac{d}{dx}(\sin x) = \cos x$$

$$\frac{d}{dx}(\cos x) = -\sin x$$

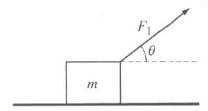
$$\int x^n dx = \frac{1}{n+1} x^{n+1}, n \neq -1$$
$$\int e^x dx = e^x$$

$$\int \frac{dx}{x} = \ln|x|$$

$$\int \cos x \, dx = \sin x$$

$$\int \cos x \, dx = \sin x$$

$$\int \sin x \, dx = -\cos x$$

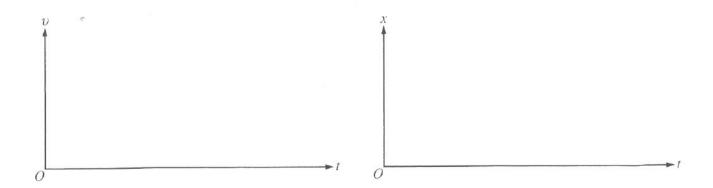

$$\int \sin x \, dx = -\cos x$$

PHYSICS C: MECHANICS SECTION II

Time—45 minutes

3 Questions

Directions: Answer all three questions. The suggested time is about 15 minutes for answering each of the questions, which are worth 15 points each. The parts within a question may not have equal weight. Show all your working the pink booklet in the spaces provided after each part, NOT in this green insert.



Mech. 1.

A block of mass m is pulled along a rough horizontal surface by a constant applied force of magnitude F_1 that acts at an angle θ to the horizontal, as indicated above. The acceleration of the block is a_1 . Express all algebraic answers in terms of m, F_1 , θ , a_1 , and fundamental constants.

(a) On the figure below, draw and label a free-body diagram showing all the forces on the block.

- (b) Derive an expression for the normal force exerted by the surface on the block.
- (c) Derive an expression for the coefficient of kinetic friction μ between the block and the surface.
- (d) On the axes below, sketch graphs of the speed v and displacement x of the block as functions of time t if the block started from rest at x = 0 and t = 0.

(e) If the applied force is large enough, the block will lose contact with the surface. Derive an expression for the magnitude of the greatest acceleration a_{\max} that the block can have and still maintain contact with the ground.

Mech. 2.

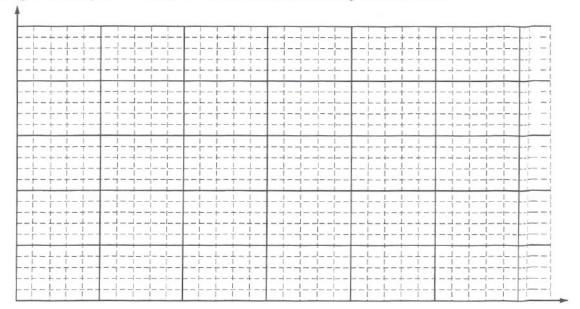
In March 1999 the Mars Global Surveyor (GS) entered its final orbit about Mars, sending data back to Earth. Assume a circular orbit with a period of 1.18×10^2 minutes = 7.08×10^3 s and orbital speed of 3.40×10^3 m/s.

The mass of the GS is 930 kg and the radius of Mars is 3.43×10^6 m.

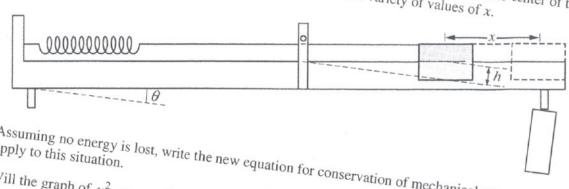
- (a) Calculate the radius of the GS orbit.
- (b) Calculate the mass of Mars.
- (c) Calculate the total mechanical energy of the GS in this orbit.
- (d) If the GS was to be placed in a lower circular orbit (closer to the surface of Mars), would the new orbital period of the GS be greater than or less than the given period?

_____Greater than _____Less than Justify your answer.

(e) In fact, the orbit the GS entered was slightly elliptical with its closest approach to Mars at 3.71×10^5 m above the surface and its furthest distance at 4.36×10^5 m above the surface. If the speed of the GS at closest approach is 3.40×10^3 m/s, calculate the speed at the furthest point of the orbit.


☐ Spring	Photogate	
		Glider
Air Tra	ick	
		The state of the s

Mech. 3.


The apparatus above is used to study conservation of mechanical energy. A spring of force constant $\mathbb D$ N/m is held horizontal over a horizontal air track, with one end attached to the air track. A light string is attached to the other end of the spring and connects it to a glider of mass m. The glider is pulled to stretch the spring anamount x from equilibrium and then released. Before reaching the photogate, the glider attains its maximum speeded the string becomes slack. The photogate measures the time t that it takes the small block on top of the glider poss through. Information about the distance x and the speed v of the glider as it passes through the photogate are iven below.

Trial#	Extension of the Spring x (m)	Speed of Glider v (m/s)	Extension Squared x^2 (m ²)	Speed Squared $v^2 \left(m^2 / s^{-2} \right)$
1	0.30×10^{-1}	0.47	0.09×10^{-2}	0.22
2	0.60×10^{-1}	0.87	0.36×10^{-2}	O.76
3	0.90×10^{-1}	1.3	0.81×10^{-2}	1.7
4	1.2×10^{-1}	1.6	1.4×10^{-2}	2.6
5	1.5×10^{-1}	2.2	2.3×10^{-2}	4.8

- (a) Assuming no energy is lost, write the equation for conservation of mechanical energy that would apply to this situation.
- (b) On the grid below, plot v^2 versus x^2 . Label the axes, including units and scale.

- i. Draw a best-fit straight line through the data.
- ii. Use the best-fit line to obtain the mass m of the glider.
- (d) The track is now tilted at an angle θ as shown below. When the spring is unstretched, the center of the glider

- i. Assuming no energy is lost, write the new equation for conservation of mechanical energy that would
- ii. Will the graph of v^2 versus x^2 for this new experiment be a straight line? Justify your answer.